

Pergamon

0040-4039(94)01117-6

Asymmetric Synthesis of (R)-3,3-Dimethyl-2-hydroxy-y-butyrolactone en route to the Formal Synthesis of Calcium D-pantothenate

A V Rama Rao^{*}, S Mahender Rao and G V M Sharma Indian Institute of Chemical Technology, Hyderabad 500 007, India

Abstract : An efficient asymmetric protocol for the synthesis of (R)-3,3-dimethyl-2-hydroxy- γ -butyrolactone, a crucial intermediate for the synthesis of calcium D-pantothenate and several other compounds is described, where the requisite chirality is incorporated by Sharpless asymmetric epoxidation reaction.

(R)-3,3-Dimethyl-2-hydroxy- γ -butyrolactone (R-pantolactone; 1) is an important intermediate in the synthesis of D-pantothenic acid (part of coenzyme A) enroute to calcium D-pantothenate¹ (2a, Vit.B group), D-panthenol² (2b, bactericide), D-pantetheine³ (2c, growth factor) and D-pantoyl taurine⁴ (2d, bacterial growth inhibitor). Compound I has also been extensively used as a chiral auxillary⁵ and chiral building block⁶ in the synthesis of natural products. Importance of (R)-pantolactone (1) has earlier resulted in the development of its synthesis involving resolution⁷ (chemical or enzymatic) of (±) 1¹ or reduction⁸ (microbial or enantioselective) of 3,3-dimethyl-2-oxo- -butyrolactone as the key step. Herein, we report an efficient asymmetric route for the synthesis of 1 enroute to the formal synthesis of calcium D-pantothenate (2a), making use of Sharpless asymmetric epoxidation as the key step for the introduction of the lone stereocentre in 1.

Antithetic analysis of 1 (scheme 1) indicated that the acid functionality could be efficiently derived by the oxidation of the terminal olefin in 3. The allylic carbinol 3 in turn would be effectively formed by a regioselective ring opening of the chiral oxirane methanol 4, while the epoxy alcohol 4 could be prepared from the allylic alcohol 5 by Sharpless asymmetric epoxidation reaction. Thus the main strategy in the incorporation of chirality would be accomplished through the asymmetric epoxidation.

Accordingly, the requisite allylic alcohol 5 (scheme 2) was made in 3 steps from the known⁷ 2,2-dimethyl-3-hydroxy propionaldehyde (6). Thus Wittig olefination of 6 (prepared from the aldol condensation of isobutyraldehyde with 37% formalin in presence of K_2CO_3) with (carbethoxymethylene)triphenylphosphorane in benzene at reflux gave ester 7^9 in 78% yield. Compound 7 on silylation with TBDMSCl in presence of imidazole in DMF gave silylated

a) $Ph_3P=CHCO_2Et$, benzene, 80°C; b) TBDMSCl, imidazole, DMF; c) DIBAL-H, DCM, -10°C; d) (-)DIPT, TBHP, TIP, DCM; e) Ph_3P , CCl_4 , 80°C; f) Sodium sand, ether; g) O_3 , Ph_3P , DCM, -78°C; h) $NaClO_2$, NaH_2PO_4 , H_2O_2 , aq. CH_3CN , 0-10°C; i) PTSA, $CHCl_3$, 60°C.

product in 81% yield. Subsquently reduction of the ester 8 with DIBAL-H in DCM at -20°C afforded 5 (74%). The crucial Sharpless¹⁰ asymmetric epoxidation on allylic alcohol 5 with TBHP in presence of (-)DIPT and TIP in DCM at -20°C in 2h furnished the epoxy alcohol 4 in 75% yield, $\left[\alpha\right]_{D}$ + 13.67° (c 1.03, CHCl₃), whose optical purity (98% ee) was determined from the ¹H and ¹⁹F NMR (400 MHz) spectra of the corresponding Mosher ester 4a, thereby

achieving the incorporation of lone stereocentre that is present in 1. Compound 4 on reaction with triphenyl phosphine in CCl_{μ} at reflux gave chloride 9 in 85% yield. The regioselective ring opening of 4 with pulverised sodium in ether at room temperature furnished allylic carbinol 10 (88%), $[\alpha]_{n-15.94^{\circ}}$ (c 1.6, CHCl₂). The hydroxy functionality in 10 was protected on treatment with TBDMSCI in presence of imidazole in DMF to give 3 (79%), $[\alpha]_D$ -12.6° (c 1.35, $CHCl_2$), whose ¹H NMR spectrum (200 MHz) indicated the chemical shifts for the terminal olefinic protons at δ 5.1 to 5.32 (m, 2H) and 5.85 to 6.0 (m, 1H). The terminal olefin in 10 was transformed into the acid by a two step sequence. Accordingly, ozonolysis of 10 in DCM at -78°C followed by quenching with PhaP gave the aldehyde 11 which on subsequent oxidation¹¹ with sodium chlorite and H_2O_2 in presence of NaH₂PO₄ in aq. CH₃CN at 0-10°C afforded acid 12 in 68% yield, $[\alpha]_{D}$ +10.1° (c 0.64, CHCl₃). Finally compound 12 on treatment with tetrabutyl ammonium fluoride in THF underwent simultaneous desilylation and lactonisation reaction and afforded (R)-pantolactone (1) in 78% yield as a hygroscopic solid, $[\alpha]_D$ -49.07° (c 1.2, H₂O), [lit.⁷ [α]_D -50.7° (c 2.05, H₂O)], whose ¹H NMR spectrum (200 MHz) indicated the chemical shifts for H-2 at δ 4.11 as a singlet while H-4,4' at δ 4.0 as AB quartet, J_{4.4'} = 8.5 Hz. Since the conversion of 1 to 2a is a well documented 7b procedure in literature, synthesis of 1 formally constitutes the total synthesis of calcium D-pantothenate (2a).

In conclusion, it is pertinent to mention that the present protocol provides an efficient approach for the synthesis of (R)-pantolactone (1) and related compounds.

Acknowledgments : One of the authors (SMR) is thankful to CSIR, New Delhi, India for financial support.

References:

- Brown, G.M.; Williamson, M. 'Advances in Enzymology', Meister, A., (ed.) 1982, 53, 345, John Wiley and Sons, Interscience Publishers, New York.
- 2. Shimizu, S., Tani, Y. and Ogata, K. Agri. Biol. Chem. 1974, 38, 1989.
- a) King, T.F.; Stewart, C.J. and Cheldelin, V.H. J. Am. Chem. Soc. 1953, 75, 1290;
 b) Baddiley, J. and Thain, E.M. J. Chem. Soc. 1952, 800.
- a) Kuhn, R.; Wieland, T. and Moller, E.F. Ber. 1941, 74, 1605; b) For other use see
 : Neidlein, R. and Greulich, P., Helv. Chim. Acta., 1992, 75, 2545.
- a) Cativiela, C.; Mayoral, J.A.; Avenoza, A.; Peregrina, J.M.; Lahoz, F.J. and Gimeno, S. J. Org. Chem. 1992, 57, 4664; b) Knol, J.; Jansen, J.F.G.A.; van Bolhuis, F. and Feringa, B.L. Tetrahedron Lett., 1991, 32, 7465; c) Poll, T.; Sobczak, A.; Hartmann, H. and Helmchen, G. Tetrahedron Lett., 1985, 20, 3095; d) Bestmann, H.J. and Schobert, R. Angew. Chem. Int. Ed (Engl), 1985, 24, 790.
- a) Dolle, R.E. and Nicolaou, K.C. J. Am. Chem. Soc., 1985, 107, 1691; b) Lavallee,
 P.; Ruel, R.; Grenier, L. and Bissonnette, M. Tetrahedron Lett., 1986, 27, 679; c) Fischer, G.C.; Turakhia, R.H. and Morrow, C.J. J. Org. Chem. 1985, 50, 2011.
- a) Stiller, E.T.; Harris, S.A.; Finkelstein, J.; Keresztesy, J.C. and Folkers, K. J. Am. Chem. Soc., 1940, 62, 1745; b) Kagan, F.; Heinzelman, R.V.; Weisblat, D.T. and Greiner, W. J. Am. Chem. Soc., 1957, 79, 3545; c) Beutel, R. and Tishler, M. J. Am. Chem. Soc., 1946, 68, 1463; d) Paust, J.; Fohl, F.P.; Reif, W. and Schmidt, W. Ann. Chem.

1978, 1024,; e) Fuelling, G. and Schudok, M. Chem. Abst: 1992, 116, p19736e; f) Miki, H.; Yamaguchi, T.; Hikichi, Y.; Nogami, I. and Moriya, T. Chem. Abst: 1992, 117, p169565h.

- a) Lanzillota, R.P.; Bradly, D.G.; McDonald, K.M. Appl. Microb. 1974, 27, 130; b) Kuhn, R. and Wieland, T. Ber. 1942, 75, 121; c) Achiwa, K. Heterocycles, 1978, 9, 1539; d) Achiwa, K. Chem. Lett. 1978, 297; e) Ojima, I.; Kogure, T. and Terasaki, T. J. Org. Chem. 1978, 43, 3444; f) Hata, H.; Morishita, T.; Akutsu, S. and Kawamura, M. Synthesis, 1991, 289; g) Fizet, C. Helv. Chim. Acta. 1982, 65, 2024.
- 9. All the new compounds gave correct spectral analysis.
- a) Katsuki, T. and Sharpless, K.B. J. Am. Chem. Soc. 1980, 102, 5974; b) Gao, Y.; Hanson, R.M.; Klunder, J.M.; Ko, S.Y.; Masamune, H. and Sharpless, K.B. J. Am. Chem. Soc. 1987, 109, 5765.
- 11. Dhavale, D.D.; Tagliavini, E.; Trombini, C. and Umani-Ronchi, A. Tetrahedron Lett. 1988, 29, 6163.

IICT Communication No. 3394

(Received in UK 9 May 1994; accepted 10 June 1994)